Code: 22MEMD2T4

I M.Tech - II Semester - Regular Examinations - JULY - 2023

ADVANCED ROBOTICS (MACHINE DESIGN)

Duration: 3 hours Max. Marks: 60

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

				Max.			
		BL	CO	Marks			
	TINITE T			IVIAIKS			
UNIT-I							
1	Sketch line diagram of a Polar Coordinate Robot						
	and Evaluate its features along with	L3	CO1	15 M			
	Advantageous and Disadvantageous.						
OR							
2	Explain the matrix representation of a frame	L2	CO1	15 M			
	relative to a fixed reference frame. Discuss						
	about transformations relative to the rotating						
	frame.						
UNIT-II							
3	What is the role of D-H notation? Explain their						
	importance in solving Forward Kinematics with	L2	CO2	15 M			
	an example.						
OR							
4	How velocity Jacobian matrix does come into	L2	CO2	15 M			
	picture in static analysis?						
	D 1 . f 2						

UNIT-III						
5	Determine the equations of motion for 2DOF					
	RR- planar manipulator arm using Lagrange-	L2	CO3	15 M		
	Euler Formulation.					
OR						
6	What do you mean by joint space trajectory					
	planning? State how the joint space trajectory	L2	СОЗ	15 M		
	can be established for a required tool space					
	trajectory.					
UNIT-IV						
7	Explain in detail about proportional, PI and PID	L3	CO4	15 M		
	controllers.	L3	CO4	13 WI		
OR						
8	Explain any three position sensors with their	L3	CO4	15 M		
	application which are used in robotics.	LJ		13 101		